
Spatio-temporal Indexing in Non-relational
Distributed Databases

Anthony Fox, Chris Eichelberger, James Hughes, Skylar Lyon
Commonwealth Computer Research, Inc

{anthonyfox, chriseichelberger, jameshughes, skylarlyon}@ccri.com

Abstract—Big Data has driven the need for datastores that
can scale horizontally leading to the development of many
different NoSQL database implementations, each with different
persistence and query philosophies. Spatio-temporal data such as
location data is one of the largest types of data being collected
today. We describe a novel spatio-temporal index structure
that leverages the horizontal scalability of NoSQL databases
to achieve performant query and transformation semantics. We
present performance characteristics gathered from testing with
Accumulo.

Keywords-spatio-temporal, nosql, big data, column family
database, geohash

I. INTRODUCTION

Spatio-temporal data sets have seen a rapid expansion in
volume and velocity due to recent web services capturing
geolocations for much of user activity. Tweets on Twitter
have a spatio-temporal reference as do photographs uploaded
to Instagram and Flickr. Foursquare allows users to ’check-
in’ to a location at a given time. Most of these data sets
have become possible with the advent of smartphones that
double as geolocating sensors. Traditional RDBMSs can no
longer keep up with the volume of data, and thus researchers
and industry have begun exploring alternative persistence and
query technologies.

Our goal in this paper is to present a spatio-temporal
indexing structure built on top of a column-family oriented
distributed data store that enables efficient storage, querying,
and transformation capabilities for large spatio-temporal data
sets. First, in section 2, we will review spatial indexing
strategies, geohashes, and non-relational data stores with a
focus on column-family stores. In section 3, we discuss our
strategy for storing and retrieving geo-time data in Accumulo,
an instance of a column family data store. In the last two
sections, we report the test results, draw conclusions, and
indicate directions for future effort.

II. BACKGROUND

Before we discuss higher dimensional indexing, we recall
that B+-trees [6] are used widely in file systems and databases
to store and retrieve files and entries effectively. B+-trees
provide a tree structure on linearly ordered data such as a
time field in a database table. While B+-trees and various
derivative data structures cannot directly store higher dimen-
sional data, they still play an integral role organizing the data
structures which can serve to index multi-dimensional entries

in a database. Of note, both the R-trees we discuss next and
Accumulo use B+-trees to store data. After a discussion of
indexing spatial data, we will recall the details of geohashes
which form the basis of the crucial spatial component of our
Accumulo key design. Lastly, we will give some background
information about Accumulo.

A. Spatial indexing in RDBMSs

A spatial database is a database specially equipped to store
data with a geometric component and to retrieve results using
topological and distance-based queries. Typical examples of
queries include topological predicates such as "covers" (e.g.,
"find police stations in Chicago") or "intersects" (e.g., "find
rivers which run through Tennessee") as well as metric-based
queries like finding all entries within a distance of a point (a
range query) or finding the k nearest neighbors to a geometry.

In traditional RDBMSs, the entries are stored in a table,
and an additional spatial index is built separately. This index
can be referenced by the database system and provides the
chief means of efficiently answering queries which contain a
geometric predicate.

Many traditional RDBMSs employ R-trees or QuadTrees
for indexing, so we will recall their basic details next. In
particular, PostGIS adds R-tree support to PostgreSQL [17].

1) R-trees and QuadTrees: In general, an R-tree stores
n-dimensional geometries by replacing each geometry with
its minimum bounding (n-dimensional) rectangle (MBR). The
MBRs are stored in a B+-tree structure. Since Guttman’s
original paper describing R-trees[11], numerous modifications
have been suggested and implemented [15]. These R-tree
variants improve storage and hence retrieval time in exchange
for complexity in inserting, deleting, and maintaining the
R-tree. Separate from the particulars of tree management,
algorithms have been designed to address specific requests
including range queries [11], topological queries [16], and k
nearest neighbor [18]. (Again, see [15] for a survey.)

Finkel and Bentley defined quadtrees in [8]. A quadtree is a
tree where each non-leaf node has exactly four children. This
structure allows one to split a rectangular region into quarters
in a natural way. Oracle Spatial is an example of a RDBMS
with Quadtree based-index support. In [13], researchers at Ora-
cle found that their R-tree index outperformed their Quadtree
index for their test sets. Further, they noted that it required
extensive testing to find the optimal tiling level for optimal
Quadtree performance.

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 291 1

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

2) Other Recent Approaches: In recent years, document
oriented databases have seen increased use in scale-challenged
scenarios. Two such databases of particular interest to the
spatial community are MongoDB and Solr. Both have incorpo-
rated geohashes in their spatial indexing approaches[1], [19],
so we recall the details of geohashes next.

B. Geohashes

Gustavo Niemeyer invented geohashes in 2008 with the
purpose of geocoding specific points as a short string to be
used in web URLs (http://www.geohash.org/). He entered the
system into the public domain by publishing a Wikipedia page
on February 26, 2008[10].

A geohash is a binary string in which each character
indicates alternating divisions of the global longitude-latitude
rectangle [−180, 180] × [−90, 90]. The first division splits
the rectangle into two squares ([−180, 0] × [−90, 90] and
[0, 180] × [−90, 90]). Points (or more generally geometries)
which are to the left of the vertical division have a geohash
beginning with a ’0’ and the ones in the right half have
geohashes beginning with a ’1’. In each of the squares, the
next split is horizontal; points below the line receive a ’0’ and
the ones above a ’1’. This splitting continues until the desired
resolution is achieved.

In order to make geohashes more useful for the web, the
inventor assigned a plain text, base-32 encoding for his web
service. As binary strings, geohashes can be of any non-
negative length, but for web use, geohashes are typically seen
in lengths which are multiples of five.

Geohashes provide some notable properties.
• Each geohash can be thought of as a longitude-latitude

rectangle.
• Geohashes provide a z-order traversal of rectangles cov-

ering the Earth at each resolution. (Figure ??)
• Containment. Adding characters to the end of a geohash

specifies a smaller rectangle contained inside the initial
one. t ⊃ tt ⊃ ttuv. (Figure 2)

• Locality. Shared prefixes imply closeness. (dp is close
to dr). Note that the converse is false as 9z and dp are
adjacent while having no common prefix. (Figure 2)

Fig. 1. z-order traversal of the globe via 4-bit geohashes. Every geohash
rectangle can be decomposed into four sub-hashes that are visited in a self-
similar Z pattern, ad infinitum.

Geohashes effectively define an implicit, recursive quadtree
over the world-wide longitude-latitude rectangle. We will

Fig. 2. Geohash Locality and Nesting

leverage this trie structure to construct spatial keys in Ac-
cumulo.

C. Accumulo: A Non-relational Distributed Database

Accumulo was inspired by Google’s BigTable implementa-
tion. We will briefly present some BigTable features, and then
describe a few notable additions in Accumulo.

1) BigTable Database Model: BigTable stores its data as a
sorted list of key-value pairs where the keys consist of a row
key, a column key, and a timestamp; and values are byte arrays.
Each table consists of a number of tablets, each of which
holds the data for a lexicographical range of row keys. These
tablets are stored in column-oriented files in the Google File
System, Google’s proprietary distributed file system. To further
assist with locality, column keys consist of a column family
and a column qualifier. For each table, a number of column
families are specified and those entries are stored together.
Thus column families allow a BigTable user to reason about
how their data is stored. The last part of the key, the timestamp
can be used for version control.

Since the publication of the BigTable design by Google
[5], a number of other column family oriented databases have
been developed and released. Three of the most popular are
Accumulo, Cassandra, and HBase; each is a top-level Apache
project. While each has strengths and weaknesses, we will
focus on Accumulo because of its ability to add server-side
programming via a feature called iterators.

2) Accumulo Overview: Apache Accumulo builds on the
BigTable design by adding cell-level security and a server-side
programming model. Our spatial query capability leverages
iterators to execute spatio-temporal predicate queries. Figure
3 shows a representation of an Accumulo key-value pair. Note
that Accumulo keys have added a visibility component to

292
2

BigTable’s keys and explicitly split the column key into the
column family and column qualifier. An Accumulo table forms
a sparse, sorted, multi-dimensional map.

Fig. 3. Structure of a key-value pair

3) Accumulo Iterators: The Accumulo core/system itera-
tors provide a sorted view of the key-value pairs in the table
and enable seeks across the row or column family dimensions.
User-defined/user-configured iterators provide two main func-
tions: filtering data and transforming data. As an example, we
could apply a timestamp filter to return only the entries in a
given time period. Additionally, we could add a Combiner to
produce statistics (such as the maximum value, the sum, and
the count) on the filtered rows. When iterators are composed,
we have an iterator chain.

Accumulo enables the use of a pattern known as the
Intersecting Iterator to colocate and traverse an index and the
associated data[9]. We utilize a modification of this pattern
in our spatial index, and we briefly describe it here in the
context of an inverted index for text searching of a document.
There are two related key formats in this pattern. The index
format contains a bin number in the row. This effectively
acts as a shard index and ensures that all of the information
associated with that bin are stored on a single tablet on a single
server, because Accumulo never splits rows across tablets.
The column family contains a single term while the column
qualifier contains a document ID.

Fig. 4. Index Row Key Format

The actual document is stored with the same bin number
so that it resides in the same row (and hence tablet) as the
index entry. Each document row’s column family contains the
document id and corresponds to the column qualifier of the
index cell

Fig. 5. Data Row Key Format

As an example, to perform a query such as "Select all
documents that contain the word ’dutiful’", a client uses two
coordinated server-side iterators. The first iterator traverses the
index keys and emits the column qualifiers for hits. The second
iterator traverses the data keys and returns key-value pairs with
column families returned by the first iterator.

4) Bloom Filters : Originally proposed by Burton Bloom
[2], a Bloom filter is a lossy mechanism for determining
whether a piece of information has ever been encountered.
The filter consists of a collection of binary probes that are
initialized to 0, but will remain set to 1 once they are activated.
When a new object arrives, multiple hash functions are used
to associate that object to a subset of the probes, and those
probes are activated. To test whether a new object has ever
been seen before, its probe set is identified and checked: If not
all of the probes in the probe-set are activated, then the object
has never before been seen by the Bloom filter. A negative
response indicates definitively that the object has never been
processed by the filter; a positive response indicates only that
it is possible (but not certain) that the object was previously
encountered. The likelihood of a Bloom filter reporting a false-
positive increases directly with the number of objects stored,
and decreases with the number of probes allocated. A Bloom
filter is maintained for each block in a tablet and is used to
filter out requests which will not match any entries in the
block.

5) Accumulo Load Balancing: Load balancing is the pro-
cess of allocating activity and resources across workers so that
no single worker is significantly busier than any other for any
long span of time. Within a key-value store, activity follows
data, so load balancing becomes a matter of how to distribute
data.

Accumulo’s TableLoadBalancer works by spreading
each table’s tablets across the tablet-servers as evenly as pos-
sible. This is particularly useful when the underlying data are
randomly sharded (as is the case with our index), because the
random sharding shares the same goal as the table-balancing:
distribute query work across all of the available nodes as
evenly as possible. Because its advantages favor our use case,
we use the TableLoadBalancer rather than the default
load balancer.

III. SPATIO-TEMPORAL INDEX STRUCTURE

There is no perfect way to map from three dimensions
(latitude, longitude, time) to one (lexicographical ordering of
keys in a table), especially when time has radically different
bounds than location. A relational database (RDBMS) has the
ability to use information from multiple indexes to determine
how best to search for the records that satisfy all query criteria.
A key-value store, in contrast, has only a single index that
is built atop the constraint that all records are ordered lexi-
cographically. This means that a geospatial indexing scheme
is essentially a way to encode geo-time information in keys
so that their natural ordering innately makes spatio-temporal
queries quickly reducible to a set of range requests that
contain the desired results and a minimum of additional (non-
qualifying) elements.

293 3

We build index keys by interleaving portions of a point’s
geohash string representing the geometry with parts of the
datetime string, and prefix the row identifier with a random
bin number to help spread our data across the tablet servers.
By choosing to use 35-bit geohash strings and ’yyyyMMddhh’
representations of dates, this construction divides the data into
unit compartments that are approximately 150 meters square
and one hour in duration. Geohashes alone proceed through
space in a z-order traversal, and date strings proceed linearly
through time. The way that parts of these two elements are
woven together yields a linear order that stutter-steps its way
through every compartment in the three-dimensional space.

A. Storing Point Data
Let us consider storing data associated to a point and a

time. The location of the point is represented as a 35-bit
geohash (a 7-character string using Niemeyer’s encoding),
and the date-time information is encoded as a string of the
format ’yyyyMMdd’. (See Fig. 6.) These two strings – one
for location and one for time – are divided up into parts, and
distributed among the elements of the index key in a manner
described shortly.

If we only used geohashes and dates to index our entries,
some rows of our tables would contain vastly more data than
others. If one were storing geo-located tweets, for example,
New York City would have many more entries than Char-
lottesville, Virginia. Because each row is stored in exactly one
tablet (and hence, one server), concentrating a large number
of similar entries in a single row would subject that server to
a disproportionate query load, bogging down response times.

1) Index Key Format:
1) Row ID To avoid such an imbalance, our index keys

begin with a random bin number in a designated range
to act as a sharding parameter. Appended to the bin
number in the row key, we add the coarsest geospatial
and temporal bounds, separated by a specially desig-
nated character. This distributes similar geo-time points
uniformly across the shards, and enables pre-defined
split-points for the table – based on the maximum shard
number – ensuring that all queries are parallelizable. For
example, 01~u~201205 is a row key that specifies
a shard of 01, a geohash bound corresponding to the
u rectangle, and the month of May 2012. The random
shard can have values between 00 and 99. Therefore, the
spatio-temporal bound corresponding to u and 201205
is uniformly distributed across compute and storage
resources.

2) Column Family and Qualifier Key The column family
of the index key contains the next resolution of
geospatial bounds, while the column qualifier contains
the identifier of the data element and even higher-
resolution spatio-temporal bounds. For example, if
the column family is 01m and the column qualifier
is GDELT.2973011______~tw0~0722, then, in
conjunction with the row key, the data element with
id GDELT.2973011 (padded with underscores) falls
within the u01mtw0 35-bit geohash and during the
10:00pm hour of May 7, 2012 (UTC).

Fig. 6. Example of encoding geo-time data into an index entry

2) Data Keys: Every index-key, in accordance with the
intersecting-iterator pattern, has one corresponding data key.
The data key shares the row ID with the index key, ensuring
colocation between the index-keys and data-keys, but uses the
element identifier as its column family; uses an attribute name
as its column qualifier; and stores the fully-encoded form of
the SimpleFeature representation of the object in the value1.

B. Storing non-point geometries

This index is designed primarily to store and query geo-
time data whose geometry consists of a single point, but there
is secondary support built-in for non-point geometries. The
challenge of storing non-point geometries is that the index-
ing scheme assumes a single location (35-bit geohash) per
stored entry. To accommodate geometries that cover multiple
geohashes, the storage engine decomposes each non-point
geometry into a collection of covering, disjoint geohashes
at potentially mixed resolutions, and stores each constituent
geohash as a separate item associated with the common
identifier. Figure 7 illustrates how a polygon and line-string
are decomposed into subordinate geohashes. This method
introduces duplication into the index, so a final, client-side
iterator is required to ensure that each qualifying feature’s
identifier is returned no more than once.

Fig. 7. The (greedy) decomposition algorithm starts with the minimum-
bounding geohash that covers the target geometry, and maintains a list of
covering geohashes sorted in descending order of “wasted” overlap. For as
long as the list contains fewer geohashes than the maximum specified by the
indexing scheme, the algorithm decomposes the head (worst) geohash into
its child geohashes, and computes their overlap with the target geometry, and
inserts these geohashes into the ordered list.

1This geo-time API relies upon many of the Open Geographic Consortium
standards as embodied in the GeoTools library. SimpleFeature is a
GeoTools abstraction of a geographic object with support for other attribute,
value pairs.

294 4

At query time, the common identifier is used to filter out
duplicate entries so that the user is presented with exactly one
copy of each unique geo-time object.

C. Query Planning
Computing the results of a query involves building an

iterator stack that coordinates an index iterator and a data
iterator and optimizes traversal of the underlying storage of
the table. As a working example, consider querying for events
in New York City in May of 2012. First, the query polygon is
converted to its minimum bounding rectangle from which we
can determine the coarse geohashes that need to be inspected
within the row range. Since New York is contained within the
geohash dr5, we can limit our query to only those rows with
d in the row key. Second, the temporal bounds, 201205, are
appended to the geohashes to further refine the row range.
Finally, the shard ids are prepended to the row keys at which
point we have fully identified every row that must be inspected:
[00-99]~d~201205. This process effectively narrows in
on only the data that must be considered when computing
results. The next level of spatio-temporal resolution in the
query refines the data traversal by identifying the column
families that need to be inspected. In the example query, we
need to consider geohashes that are contained within dr5
thus column families must contain r5. During this phase of
query processing, the bloom filters enable quick checks to
determine if a particular block must be opened at all. Once
a full index key has been identified as a candidate result, the
index iterator coordinates the data iterator traversal to find
the actual data record which is checked against the original
polygon and temporal predicate.

The iterator stack is built using a combination of Accumulo
system iterators (row and column-family filtering) and custom
iterators (geospatial, temporal and attribute filters). Figure 8
illustrates how the iterator stack is built up and how each layer
contributes to query processing.

Fig. 8. The spatio-temporal iterator stack. Entries are presented to the
iterators in lexicographic sort order. The system iterators comprise the first
part of the stack and filter the majority of data from consideration in query
processing. The geo-time index in turn filters the output of the system iterators.
Finally, the feature filter applies any attribute predicates to the data records
identified as candidates by the first two iterator layers.

D. Implementation Details
To facilitate use of this spatial indexing system, we have im-

plemented the Geotools DataStore, FeatureStore, and Feature-
Source interfaces. This has allowed us to configure GeoServer,

an open-source WMS service (and much more), to generate
rasterized tiles of high volume spatio-temporal data backed by
Accumulo. In effect, this opens the spatio-temporal data set
to access by any OGC-compliant client and, coupled with the
OGC ECQL standard, provides a flexible and standards-based
means of interacting with these data sets.

IV. PERFORMANCE RESULTS

A. Test data

For our testing, we chose the Global Database of Events,
Language, and Tone (GDELT)[12]. This dataset consists of
over 200 million geo-political events from across the globe
coded using CAMEO codes [3] describing the type of event.
We picked this dataset since it represented a range of tem-
poral and spatial data. Additionally, since the data represent
automatically extracted international events from around the
world, some places would be represented more often giving
the dataset a non-uniform spatial distribution. In figures 9 and
10, we can see this distribution across a map of the world and
by geohash.

Fig. 9. GDELT event counts aggregated per 21-bit geohash (colored by
quantile)

Fig. 10. Distribution of GDELT events across 21-bit geohashes

B. Queries

There were four broad categories of experiments conducted
as part of this research: spatial queries; temporal queries;
filtering queries; and scaling.

1) Spatial: This experiment was designed to capture the
relationship between the number of points in a polygon and
the query’s total response time. We collected a group of 105
polygons from around the world; see Fig. 11 for their geo-
graphic distribution. Each of these polygons is corresponds to a

295
5

single geohash, most specified at 35 bits. A few larger geohash
polygons were included for completeness. Furthermore, each
polygon was chosen because it contains at least 100 data
points.

Fig. 11. Distribution of our standard test-set of polygons sampled from
the larger GDELT database. Most of these polygons represent specific 35-bit
geohashes, though there are a few larger polygons included in the set.

The polygons were presented 10 times each, and their order
was randomized before each replication. Each polygon became
the basis for a single geo-time query, using a static interval
of calendar year 2011. Queries were presented sequentially,
so as to reduce side-effects, keep timing consistent, and
normalize over cached results. The results of this experiment
are presented in Fig. 12.

Fig. 12. Response times for a standard set of global query-polygons. This
is a log-log plot to highlight the lower end of the scales.

The upward trend simply reflects the fact that increasing the
number of query responses increases the response time, and
would be notable only if it were not present. Somewhat more
interesting is how the variation in the timing results appears
to be greater among the low-volume queries than it is among
the high-volume queries. This is almost entirely an artifact of
the way the plot axes are scaled: Because there are multiple
orders of magnitude in both query density and response time,
and because the lower-end of both axes is significantly more
crowded than the upper-end, the data are rendered on a log-
log plot to allow for better visual separation. This has the side
effect of amplifying the visual impact of what are genuinely
minor changes in the mean response time.

The main result from this experiment is that the indexing
scheme was able to complete most of these queries in one
second or less. Another consequence of Accumulo’s batch-
scanner implementation is that results stream back to the client

as soon as they become available. Therefore, initial results
arrive sooner than the time reported for the query to complete.

2) Temporal: These experiments were designed to measure
the impact of temporal filters of different sizes. The location
– a rectangle representing a coarse bounding box around
the city of London, England – was held constant. Three
separate window-sizes were selected: one day; one week; and
one month. Twenty-one periods of each size were evenly
distributed across an interval from 2012-06-01 to 2012-12-
31, and each unique query interval was run one time. The
results are summarized in Table I that includes the number of
responses and the effective throughput defined in terms of the
number of records returned per second.

TABLE I
TEMPORAL RESULTS.

period size mean responses mean throughput
(records/sec)

day 436 2,019
week 1646 8,034
month 4564 32,988

3) Filtering: There are three generic types of queries that
can be applied to geo-time data:

1) Spatial: constrain the location with a polygon: "select
only the items in Virginia";

2) Temporal: constrain the time with a date-time interval:
"select only the items in December 2012";

3) Attribute Filtering: constrain the results based on non-
geo-time attributes specific to the data set: "select only
the items having a price less than $100 or a product type
other than ’LUXURY’"

The aim of the filtering tests was to examine the relative
costs of these three types of constraints. Four separate sets of
test were conducted:

TABLE II
ATTRIBUTE FILTERS

polygon interval attributes
London - -
London August 2012 -
London - EventBaseCode=’010’
London August 2012 EventBaseCode=’010’

The attribute filter is written using the Extended Common
Query Language (ECQL) [7], part of the API offered by
GeoTools. Though it can specify queries using spatial and
temporal clauses, the use-case presented here relies solely
upon the non-geo-spatial filtering capabilities of the language.
The GDELT CAMEO event codes are divided into a coarse
root code, a more specific base code, and finally, the full
event code. We used the attribute-filter EventBaseCode
= ’010’, corresponding to "Make statement, not specified
below". Such events are generic, and occur fairly frequently
(about 10% of entries), making it a good candidate for testing.

4) Scaling: The purpose of this experiment was to investi-
gate how geo-time queries scale with the number of available
tablet-servers, and to identify what other factors influence
response time. Our base infrastructure consists of 13 virtual

296 6

Fig. 13. Attribute filtering queries

machines, each hosting its own tablet server. A set of 1,000
separate polygons constituted our query set. The independent
variables included:

1) the number of tablet servers running: 13 (all) or 6
2) the number of shards: 100 (default) or 26
3) the number of geohash characters to store in the row ID

(spatial bin level): 1 (default) or 2
Table III summarizes the results from running the query

set against all 8 of these configurations. The data in the
corresponding figure have been transformed, in that the X-
axis reports the mean number of tablets per tablet-server, and
the Y-axis reports the mean throughput of the configuration
in records per second. This change-of-variables makes the
underlying trends in the data more readily apparent.

TABLE III
COMPARISON OF NUMBER OF TABLET SERVERS, NUMBER OF SHARDS,

AND NUMBER OF GEOHASH CHARACTERS IN THE ROW ID.

tablet
servers

parts spatial
bins

mean
time
(sec)

mean
records/sec

tablets
/server

13 26 1 1.82 2,840 2.0
13 26 2 0.93 16,907 2.0
6 26 1 1.92 2,518 4.3
6 26 2 1.26 12,709 4.3
13 100 1 1.88 2,466 7.7
13 100 2 0.99 11,117 7.7
6 100 1 2.24 2,016 16.7
6 100 2 1.12 8,755 16.7

The number of running tablet servers appears to have a
weak (< 10%) affect on query-response time. Given that most
of the query polygons are relatively small and have few hits
each, the time spent planning each query may well dominate
the time required to execute the query. Having more running
tablet servers improves query performance, but not without
friction.

The number of shards was not important independently, but
the relationship to the number of running tablet servers appears
to have a small effect on query throughput, with lower ratios
being weakly associated with greater throughput. This trend is
consistent across both 1- and 2-geohash-characters in the row
ID. Considering that the query planner creates at least one
range – and often more – per shard and that all of the tablets
necessarily must be scanned as part of every query, it seems

Fig. 14. Scaling experiments.

reasonable that loading more tablets on to each tablet-server
would degrade the performance of the queries.

The most significant variable appears to be the number
of geohash characters that are incorporated into the row ID,
with 2 consistently out-performing 1. One geohash character
constrains the row to cover 1/32 of the Earth, whereas two
drops that fraction to 1/1,024, making each row much more
selective. If there were no other effects, it would be easiest
to put the entire geohash into the row ID, but this causes an
explosion in the number of explicit row-ranges that must be
queried, and increases the likelihood that the query-planner
will bin them all together into a nebulous blob that is so
general that the queries take a very long time to filter out
the false positives. It is also relevant that most of these query
polygons are based on 35-bit geohashes, meaning that most of
those queries will use exactly one combination of characters
in the leading two positions. (A larger query polygon, or one
that crosses high-level geohash boundaries, will draw hits from
geohashes that may vary in their second – or even first –
character position.) This tendency increases the discriminating
power of the second geohash character, though it is specific
to the data set and the queries run.

The main results from this experiment are that this indexing
scheme will, as a general rule, perform faster as there are more
tablet servers available; that the number of shards should be
kept relatively low with respect to the number of running tablet
servers; and that – while the default index-schema format
works reasonably well as-is – elements of the schema can, and
should, be tuned for each data set. We are actively researching
how to accomplish this automatically as we will mention
briefly in Section V-A.

V. RESULTS ANALYSIS/CONCLUSION

In traditional RDBMSs, R-trees (and other spatial indices)
are external to the data and must be updated when new

297
7

features are added. Such updates are computationally intensive
and affect performance adversely as data size increases. Our
geohash-based approach allows us to calculate a key for each
piece of data independently. Under this method, inserting and
deleting an entry uses the regular methods for adding and
removing data from Accumulo, so we incur no additional
overhead. The distribution of data is built into the index
schema by varying the number of bins and the coarsest spatio-
temporal resolution.

As expected of the temporal queries, the largest window –
a month – takes the longest to complete. Of greater interest is
the fact that there is relatively little separation in the query-
times for the day and week periods. This is, in part, attributable
to the indexing scheme. Each row is identified by the event
year and month; units of time smaller than the month are
not encoded until the column qualifier. This means that row-
ranges are likely to use the time down to the month, but not
necessarily much finer-grained than that.

That there is so little difference in the response-times
between the day-long intervals and the week-long intervals
suggests that either:

1) both intervals used the same query plan (meaning that
they shared the same candidate set), and the time re-
quired to filter this candidate set is more significant than
the time to return query hits; or

2) the intervals used different query plans, but those plans
implicated the same data blocks, in which case there was
only an insignificant difference in the work to be done

From our testing, we observed that query predicates did
result in queries which returned faster since fewer results
were returned. These additional filters created additional work
for the back-end, reducing throughput, and Accumulo could
leverage the distributed disk and processing to realize a
substantial speed-up in the rate of return. We observed that
temporal filtering is less demanding than attribute-filtering.
This is because the temporal information is incorporated in
the index rows, while the attribute information is stored within
the encoded Feature as the value of the data rows.

Tuning the number of bins and the resolution levels has
an impact on the performance of the spatio-temporal index.
The number of bins should roughly correspond to the number
of tablet servers so as to ensure parallelized query result
computations. However, the expected growth of the table
should be taken into account when defining the number of
bins. Since a crucial advantage of distributed data stores over
traditional RDBMs is horizontal scalability, the store can grow
into the number of bins by adding tablet servers at runtime.
Furthermore, if the geospatial domain of data is a subset of
the whole world, then the coarsest spatial resolution should be
tuned accordingly. The same applies to the temporal dimension
- if data falls across decades, then year (and possibly month)
should go into the row key, while if data falls within a
year, then the addition of day in the row key will improve
performance of typical queries.

A. Future Work
In this paper, we have performed a basic benchmark of our

spatio-temporal software based on Accumulo. We have not had

a chance to experiment as fully as we would have liked with
Accumulo, and we would like to outline our future directions.
First, we would like to observe that while tuning traditional
RDBMSs is well understood, a body of standard advice
for tuning Accumulo has not been created and commonly
accepted. In terms of scalability, we currently have a small
cloud shared for development. We would like to experiment
on a larger cloud to show how our software scales.

In terms of our design, there are a number of parameters
which we plan to explore in the future. First, given results
from the team Oracle with quadtrees [13], we believe that
query performance may vary when the geohash resolution of
decomposed query polygons and the geohash resolution used
to store data are different. So far, we have had acceptable
results storing our data with at the 35-bit resolution, but we
have not directly studied how different queries decompose and
their effect on query times. Further in Section III, we discussed
our use of random partitions to spread out data across the tablet
servers to increase participation in returning queries. During
our initial testing, when we adopted the binning strategy with
100 bins, we noticed a sizable performance increase, but we
do not yet have conclusive results regarding a recommended
ratio of bins to tablet servers.

In Section II-B, we reason that our key design maps geo-
time into a linear z-order by interleaving temporal sub-bands
and geohashes. Based on the resolution of a query’s time
component, different key designs may perform differently.
This is close to the idea of comparing spatial queries to
the storage geohash resolution. If similar queries can be
predicted ahead of time, these studies would help inform key
design. Since potential database use might be unknown, we
are also actively pursuing ideas which would help use create
functionality akin to Postgres’s "VACUUM ANALYZE".

We have used the tools that were developed as part of the
indexing scheme to implement a nearest-neighbor operator.
There already exist good R-tree algorithms for returning
k-nearest-neighbors efficiently [14], but the challenge is to
develop a good approach for a distributed key-value store.
Our current operator accepts a query point and a bounding
(polygon, interval) pair, and will return zero or more points
that satisfy those constraints by aggregating the results server
side. Each tablet computes its nearest-neighbor to the query
point and returns that to the client. The client finds the actual
nearest neighbor by computing the minimum of the relatively
few results. We are investigating a number of refinements to
this nearest-neighbor approach, but the existing implementa-
tion serves as proof-of-concept that the library is adequate to
support a rich variety of geo-time algorithms.

Spatial transformations such as projection/reprojection, dis-
tance queries, and translations can all be implemented on top
of the iterator chain by stacking additional operations that
perform the desired computation.

REFERENCES

[1] 2d Indexes - MongoDB Manual 2.4.4.
http://docs.mongodb.org/manual/core/2d/. [Online; accessed 20-
June-2013].

[2] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

298
8

[3] CAMEO Event Data Codebook. http://eventdata.psu.edu/data.dir/cameo.html.
[Online; accessed 20-June-2013].

[4] Michael J. Carey and Donovan A. Schneider, editors. Proceedings of
the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995. ACM Press, 1995.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and
Robert Gruber. Bigtable: A distributed storage system for structured
data (awarded best paper!). In Brian N. Bershad and Jeffrey C. Mogul,
editors, OSDI, pages 205–218. USENIX Association, 2006.

[6] Douglas Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–
137, 1979.

[7] ECQL Reference. http://docs.geoserver.org/latest/en/user/filter/ecql[On-
line; accessed 20-June-2013].

[8] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Inf., 4:1–9, 1974.

[9] Apache Foundation. Apache Accumulo Shard Example.
http://accumulo.apache.org/1.5/examples/shard.html. [Online; accessed
20-June-2013].

[10] Geohash. http://en.wikipedia.org/wiki/Geohash. [Online; accessed 20-
June-2013].

[11] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Beatrice Yormark, editor, SIGMOD’84, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 47–
57. ACM Press, 1984.

[12] Philip Schrodt Kalev Leetaru. GDELT: Global Data on Events, Lan-
guage, and Tone, 1979-2012. International Studies Association Annual
Conference, April 2013.

[13] Kothuri Venkata Ravi Kanth, Siva Ravada, and Daniel Abugov. Quadtree
and r-tree indexes in oracle spatial: a comparison using gis data. In
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, editors,
SIGMOD Conference, pages 546–557. ACM, 2002.

[14] J. Kuan and P. Lewis. Fast k nearest neighbour search for r-tree family.
In Information, Communications and Signal Processing, 1997. ICICS.,
Proceedings of 1997 International Conference on, pages 924–928 vol.2,
1997.

[15] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Pa-
padopoulos, and Y. Theodoridis. R-Trees: Theory and Applications
(Advanced Information and Knowledge Processing). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[16] Dimitris Papadias, Yannis Theodoridis, Timos K. Sellis, and Max J.
Egenhofer. Topological relations in the world of minimum bounding
rectangles: A study with r-trees. In Carey and Schneider [4], pages
92–103.

[17] PostGIS - Spatial and Geographic Objects for PostgreSQL.
http://http://postgis.net/. [Online; accessed 20-June-2013].

[18] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest
neighbor queries. In Carey and Schneider [4], pages 71–79.

[19] David Smiley. Lucene solr 4 Spatial Deep Dive.
http://www.slideshare.net/lucenerevolution/lucene-solr-4-spatial-
extended-deep-dive. [Online; accessed 20-June-2013].

299
9

